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It has been shown that the analysis of electroencephalographic �EEG� signals submitted to an appropriate
external stimulation �active paradigm� is efficient with respect to anticipating epileptic seizures �S. Kalitzin et
al., Clin. Neurophysiol. 116, 718 �2005��. To better understand how an active paradigm is able to detect
properties of EEG signals by means of which proictal states can be identified, we performed a simulation study
using a computational model of seizure generation of a hippocampal network. Applying the active stimulation
methodology, we investigated �i� how changes in model parameters that lead to a transition from the normal
ongoing EEG to an ictal pattern are reflected in the properties of the simulated EEG output signals and �ii� how
the evolution of neuronal excitability towards seizures can be reconstructed from EEG data using an active
paradigm, rather than passively, using only ongoing EEG signals. The simulations indicate that a stimulation
paradigm combined with appropriate analytical tools, as proposed here, may yield information about the
change in excitability that precedes the transition to a seizure. Such information is apparently not fully reflected
in the ongoing EEG activity. These findings give strong support to the development and application of active
paradigms with the aim of predicting the occurrence of a transition to an epileptic seizure.
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I. INTRODUCTION

Can epileptic seizures be predicted? A number of predic-
tion algorithms have been proposed to date, but no method
has been shown to perform good enough to be applied in
clinical practice �1,2�. The majority of approaches are based
on the concept that a preictal state—i.e., the state of the brain
that precedes the occurrence of an epileptic seizure—has
special properties and that the latter may be detected on on-
going electroencephalographic �EEG� signals. Accordingly,
methods able to detect such a preictal state in the electroen-
cephalogram of epileptic patients are being sought. Such ap-
proaches are based on two main assumptions. The first is that
the seizures are preceded by specific changes in signal prop-
erties detectable in ongoing—i.e., spontaneous—EEG activ-
ity, and the second is that those changes represent a neces-
sary and sufficient condition for a seizure to follow. It is
important to note that the second assumption implies a de-
terministic relation, which, however, may not hold in gen-
eral. The brain dynamics contains stochastic components that
make this relationship complex. It has been suggested �3�
that instead of searching for a method that may detect a
specific preictal state in a deterministic way, one should pref-
erably assume that it may be possible to estimate the prob-
ability of the occurrence of a change in the dynamical state
of the brain that precedes a seizure. Thus it may be possible
to calculate the probability that a subject will have a seizure
some time in advance. In this context we assume the exis-
tence of a proictal state that is associated with a high risk of

approaching a seizure. Novel seizure prediction schemes
should take into account that states of high seizure probabil-
ity do not necessarily lead to a seizure, but on the contrary,
may evolve back to the interictal state �4�. It is also not
obvious whether the first assumption, that the passive obser-
vation of spontaneous EEG activity is sufficient to reveal the
susceptibility for seizures, holds in general. As an alternative,
active paradigms based on stimulation of the brain and on
analyzing the elicited responses have been proposed �5�. It
has been shown that both in photosensitive �6� and in tem-
poral lobe epilepsy �TLE� patients �3�, the transition to a
seizure can be reliably anticipated using EEG signal features
derived from the response elicited by external stimulation,
rather than only using information extracted from EEG spon-
taneous activity.

To obtain a deeper insight into the nature of the EEG
changes leading to an ictal transition and into the reasons
why a stimulation or “active” paradigm may be superior to a
“passive” analysis, we investigated these processes using a
computational approach. Therefore we constructed a realistic
computational model of a hippocampal network. Accord-
ingly we were able to investigate functional links between
physiological parameters controlling excitability of the hip-
pocampal network, on the one hand, and EEG quantities
measured from passive observations or from the responses to
active stimulations, on the other hand. Using the model, we
demonstrated that changes during the transition to a seizure
may be reconstructed more accurately using the active than
the passive paradigm.
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II. METHODS

A. Computational model

We used a computational model of the hippocampal net-
work �CA1 subfield� developed by Wendling et al. �7,8�. We
assumed that such a model would be an appropriate tool that
could provide insight into the dynamics of real intracerebral
EEG data that were recorded from the hippocampus of pa-
tients with TLE �3�. In this model a “lumped” approach was
followed, according to which a macroscopic level of
description—i.e., at the level of a neuronal population—is
considered. For the hippocampus, this population consists of
three subpopulations of neurons: the main �pyramidal� cells
and the local inhibitory interneurons �O-LM and basket
cells� projecting to either the dendritic or the perisomatic
region of pyramidal cells, as illustrated in the schematic dia-
gram of the model provided in Fig. 1�a�. Input to interneu-
rons is excitatory �glutamate receptor mediated�. Feedback to
pyramidal cells is either excitatory �glutamate receptor me-
diated� or inhibitory �GABA receptor mediated�. Slow
�GABAA,slow� and fast �GABAA,fast� kinetics are associated
with inhibitory post-synaptic potentials �PSP� depending on

the location of GABA receptors, in the dendritic or in the
perisomatic region of pyramidal cells, respectively. A block
diagram representation of the model is shown in Fig. 1�b�.
Basically, the model can be viewed as a nonlinear dynamical
system driven by a Gaussian input noise p�t� that globally
represents the average density of afferent action potentials
from neighboring or distant populations. Interactions be-
tween subpopulations of neurons are summarized in the
model by connectivity constants C1–C7, which account for
the average number of synaptic contacts. In each subpopula-
tion, membrane potential is converted into an average pulse
density of potentials fired by the neurons using a static non-
linear function S�v�=2e0 / �1+er�v0−v�� �asymmetric sigmoid
curve�, also referred to as the “wave-to-pulse” function. Con-
versely, the average pulse density of afferent action poten-
tials is changed into an average inhibitory or excitatory post-
synaptic membrane potential using a linear dynamic transfer
function of impulse response hEXC�t�, hSDI�t�, and hFSI�t�, the
shape of which was shown to approximate that of actual
postsynaptic potentials �9�. In these “pulse-to-wave” func-
tions, EXC, SDI, and FSI denote the three main parameters
of the model, which, respectively, correspond to the ampli-
tude of average �i� excitatory PSPs �EXC�, �ii� slow dendritic
inhibitory PSPs �SDI�, and �iii� fast somatic inhibitory PSPs
�FSI�. The model output corresponds to the summation of
these average PSPs on pyramidal cells, which is known to be
the principal contribution to local field potentials. From the
mathematical viewpoint, each of the three impulse response
h functions has the general form hG�t�= G

�G
te−t/�G, where G

denotes EXC, SDI, or FSI depending on the excitatory or
inhibitory case and �G is a time constant. Each of the h
functions is the impulse response solution of a second-order
ordinary differential equation �ODE�, which is equivalent to
two first-order ODEs and thus the whole model reduces to a
set of eight ODEs. The value and the meaning of each model
parameter are given in Table I. Readers may refer to previous
reports �8� for more detailed presentations. The model is also
available online �10�. With respect to previous work, a nov-
elty is that we reproduced, in the model, the effect of the
external stimulation. We assumed that the extracellular bipo-
lar stimulation electrode would produce a change of mem-
brane potential proportional to the generated extracellular
current in all three subpopulations represented in the model.
In this way we neglected capacitive effects of the neurons’
membrane for the sake of simplicity. Additionally we intro-
duced another simplification—namely, that the change of
membrane voltage was of the same magnitude �4 mV� in all
three subpopulations, although in real tissue it would depend
on the relative position of neurons with respect to the elec-
trode. The stimulation consisted of square, monophasic
pulses of 1 ms duration at the frequency of 10 Hz, delivered
during 60 s.

B. Phase clustering index

The phase clustering index �PCI� measures the coherency
of phases of different frequency components of the evoked
responses and has been used earlier for analysis of auditory
responses �11�. The method consists of the following steps:
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FIG. 1. Neuronal population model based on the cellular orga-
nization of the hippocampus �CA1 subfield�. �a�. Structure of model
which represents a cluster of neurons composed of three subpopu-
lations: main cells �i.e., pyramidal cells� and local interneurons �i.e.,
O-LM or basket cells�. Pyramidal cells receive excitatory input
from other pyramidal cells �collateral excitation� and inhibitory in-
put from interneurons. �b�. Block diagram representation of the
model. S�v� denote “wave-to-pulse” functions �asymmetric sigmoid
curve�, while hEXC�t�, hSDI�t�, and hFSI�t� denote “pulse-to-wave”
functions �see text�. The external stimulation was represented by an
additive model between the output of “pulse-to-wave” functions
and the potential difference induced by the extracellular bipolar
stimulation electrode “Stim.”
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�i� the stimulated signal is divided into single response ep-
ochs, �ii� a discrete Fourier transform of each epoch is per-
formed, yielding complex amplitudes of the harmonic fre-
quency components Zf

s, where f corresponds to frequency
and s is a stimulus number, and �iii� the �real-valued� PCI for
frequency f is computed as the magnitude of the average of
the complex amplitudes, normalized by their average magni-
tude, over epochs. In the mathematical expressions we de-
note PCI using the symbol �:

� f = � �Zf
s�s

��	Zf
s	2�s

� . �1�

This results in the estimation of the coherency of phases at a
given frequency f for response epochs evoked by repetitive
stimulation. The PCI index is a normalized quantity ap-
proaching 0 for randomly distributed phases and attaining

the value of 1 if all phases are equal. The so-called “relative
phase clustering index” �rPCI� is defined as the difference
between the highest PCI at any of the harmonic frequencies
and PCI at the driving �stimulation� frequency. If the differ-
ence is negative, the rPCI is set to 0. The detailed description
of the PCI measure can be found in �5�. We show in the
Appendix that within the framework of the linear response
model the PCI can be expressed as

� f = � �Zf
s�s

��	Zf
s	2�s

� = 
1 +
Sf

2

Df
2��−1/2�

, �2�

where Sf is the spectrum of the background activity and Df is
the spectrum of the system’s triggered response. Formula �2�
relates the PCI to the system’s spectral noise-to-signal ratio.

C. Nonlinear association h2

In addition to the PCI we computed other quantities that
characterize signal spectral properties and are considered rel-
evant with respect to seizure prediction. We quantified the
degree of association between the “closeness” to seizure in
the model and the value of the PCI and of these other quan-
tities. To quantify this association we used a general measure
of the interdependence between two signals called nonlinear
association or h2 index �12,13�. This measure quantifies how
much of a variation in one signal can be explained based on
variation in another signal, without making any assumptions
concerning whether their relationship is linear or not.

D. Patient data

To compare model results with experimental data, we
used intracranial EEG data from two patients with mesial
temporal lobe epilepsy undergoing invasive EEG monitoring
as part of their presurgical evaluation. Informed consent was
obtained prior to performing the intracranial electrical stimu-
lation studies that were carried out while waiting for the
habitual seizures to occur. These data were used in our pre-
vious publication �3�, and the same patient numbering is pre-
served here. In the present study, in both patients 3 and 4 we
used EEG data from hippocampal electrodes lying in the
proximity of the seizure onset site as determined from visual
inspection of preictal and ictal EEG recordings.

III. RESULTS

A. Active and passive paradigm in the model

We computed Sf and Df separately in order to assess their
relative contribution to the PCI and also to quantify their
potential ability to detect changes of excitability of the net-
work. In the model the background activity during stimula-
tion and the spontaneous activity in the absence of the stimu-
lus are practically the same. As a single value estimate of the
background activity, we can take therefore the standard de-
viation of the spontaneous output signal. It represents the
contribution of all spectral components of the spontaneous
spectrum Sf that can be measured directly from nonstimu-
lated signals. We term this quantity S0. Additionally, as a

TABLE I. Model parameters, interpretation, and values.

Parameter Interpretation Value

EXC Amplitude of the average
excitatory PSP

Varied from
2.5 to 5 mV
in this study

SDI Amplitude of the average
inhibitory PSP �slow dendritic

inhibition loop�

Varied from 20
to 50 mV in

this study

FSI Amplitude of the average
inhibitory PSP �fast somatic

inhibition loop�

20 mV

�EXC Time constant of average
excitatory postsynaptic

potentials

10 ms

�SDI Time constant of average slow
inhibitory postsynaptic potentials

35 ms

�FSI Time constant of average fast
inhibitory postsynaptic potentials

5 ms

C1, C2 Average number of synaptic
contacts in the feedback

excitatory loop

C1=C, C2=0.8C
�with C=135�

C3, C4 Average number of synaptic
contacts in the slow feedback

inhibitory loop

C3=C4=0.25C

C5, C6 Average number of synaptic
contacts in the fast feedback

inhibitory loop

C5=C6=0.1C

C7 Average number of synaptic
contacts in the connection

between slow and fast
inhibitory interneurons

C7=0.8C

v0, e0, r Parameters of the asymmetric
sigmoid function S �transforming
an average PSP into an average

density of action potentials�

v0=6 mV
e0=2.5 s−1

r=0.56 mV−1

p�t� Excitatory input noise
�positive mean Gaussian white

noise�

mean=90 pps
�pulses per second�

std=30 pps
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single-value estimate of the system’s triggered response, we
selected D1, the spectral component of the triggered response
corresponding to the driving frequency.

B. Seizure threshold

The seizure threshold in the model was quantified as the
minimal amount of increase of the mean rate of the afferent
action potentials necessary for the network to switch behav-
ior from low-amplitude normal ongoing activity to high-
amplitude limit-cycle oscillations; the latter are assumed to
correspond to seizure activity in real situations. It is often
considered that seizure generation depends, in global terms,
on the balance between excitatory and inhibitory processes
of the underlying network �14,15�. In the model two types of
inhibition coexist: a slow and a fast inhibition mediated by
the two distinct populations of interneurons targeting
GABAA receptors located either in the dendritic or in the
somatic region of pyramidal cells, respectively �16�. In the
model we targeted primarily the slow dendritic inhibition as
the relevant factor regarding the propensity for seizure oc-
currence, since it was shown that this kind of inhibition is
affected in epileptic hippocampus �17�. Therefore we inves-
tigated how the seizure threshold in the model depends on
the two parameters EXC and SDI, which correspond to the
amplitudes of the average excitatory and slow dendritic in-
hibitory postsynaptic potentials, respectively. The EXC pa-
rameter was varied from 2.5 to 5 mV in steps of 0.125 mV;
the SDI parameter was varied in the range of 20 to 50 mV in
steps of 1 mV. The seizure threshold was measured for each
pair of EXC and SDI values. Results of the simulations are
shown in Fig. 2�a�. The seizure threshold is represented
along the vertical axis and by the color of the three-
dimensional surface. It can be seen that the seizure threshold
depends on both parameters EXC and SDI. As one may ex-
pect, low overall excitation and high inhibition result in a
high threshold �light color�, while increasing values of EXC
and decreasing values of SDI result in a lowering of the
threshold �dark red color�. During the seizure threshold
analysis, the noise component was removed from the input to
improve clarity of the presentation. With the noise compo-
nent present, the parameter settings for the lowest threshold
resulted in isolated interictal spikes occasionally emerging
out of a normal background. These parameter settings were
excluded from further analysis.

C. Behavior of possible seizure “predictors”

The relationship between the values of the seizure predic-
tors S0, D1, and rPCI and the seizure threshold can be exam-
ined from the plots presented in Figs. 2�b�–2�d�. In these
plots the color code corresponds to the value of seizure
threshold, as in Fig. 2�a�. It can be seen that both S0 and D1
are poor predictors since low seizure threshold values �dark
red area� correspond to a wide range of values of these two
possible seizure predictors. Furthermore, it appears that S0
and EXC are approximately linearly related, while S0 is little
influenced by SDI �Fig. 2�b��; similarly, D1 is little influ-
enced by EXC, and a linear relation is also apparent for the
relationship between D1 and SDI. The behavior of the rPCI

is different. Low threshold values correspond to relatively
large values of the rPCI. These results show that the rPCI is
a more robust seizure predictor than the other features inves-
tigated here.

In addition, we quantified the relationship between the
value of seizure predictors and seizure threshold using the h2

association index. Figures 3�a�–3�c� show the scatter plots
between the model’s seizure threshold and different seizure
predictors along with corresponding h2 values. The nonlinear
association measures computed for the D1 and S0 predictors
�h2=0.3 and 0.64, respectively� were lower than that for the
rPCI predictor �h2=0.94�. Figure 3�d� shows the scatter plot
of rPCI values versus time to seizure and the corresponding
h2 value for the case of the EEG signal of an epileptic tem-
poral lobe patient �patient 3; see �3��. One can notice that
low PCI values �about �0.3� correspond to long “times to
seizures,” while large values �about �0.4� correspond to
short “times to seizures.” A comparison between Figs. 3�c�
and 3�d� allows us to draw a rough parallel between the
gradual increase of the rPCI value and the decrease of the
seizure threshold, as estimated using the model, on the one
hand �Fig. 3�c��, and the time to seizure in the real patient
data, on the other hand �Fig. 3�d��.

D. Comparison with experimental data

In order to examine how the parameters S0, D1, and rPCI
behave when applied to real EEG data, we constructed the
time courses of these parameters in two patients with TLE.
Results are shown in Fig. 4. In patient 3 the S0 parameter
changed little throughout the observation period, while the
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FIG. 2. �Color online� Dependence of the model properties �z
axis and color� on SDI �x axis� and EXC �y axis� parameters. In all
four plots the color scale corresponds to the value of the seizure
threshold. �a� Dependence of the seizure threshold �in pulses per
second �pps�� and a color bar showing the color scale used. �b�
Dependence of the standard deviation of spontaneous activity S0.
One can see that this measure is sensitive only to a change of the
EXC, but not to a change of the SDI parameter. �c� Dependence of
the system’s triggered response D1. One can see that this measure is
sensitive only to a change of the SDI, but not to a change of the
EXC parameter. �d� Dependence of the rPCI showing that this mea-
sure is sensitive to a change of both the EXC and SDI parameters.
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D1 parameter decreased markedly at the beginning of the
observation period, long before the first seizure �i.e., the first
seizure recorded following antiepileptic drug withdrawal
during monitoring� and thereafter remained low, reaching a
minimum just before the seizure and remained at this low
value during subsequent seizures. The rPCI started to clearly
increase some time before the first seizure and increased fur-
ther during subsequent seizures. In patient 4 the S0 parameter
increased before the first seizure and remained at about the
same level for the remaining observation period. The D1 pa-
rameter decreased very much long before the first seizure
and remained low, but without many changes, when seizures
occurred. The rPCI increased as D1 decreased far from the
first seizure, but later it increased gradually a few hours be-
fore the seizure, remained high thereafter, and then decreased
before the last observed seizures.

E. rPCI for high and low excitability

The model gives us the possibility of obtaining insight
into the significance of the rPCI in terms of the parameters
which play an essential role in the control of the excitability
of the neuronal network and thus in the transition between
normal and seizure activity. For this purpose we considered
three different ways by which the normal state, characterized
by �i� normal inhibition and normal excitation, may change
into a state of enhanced excitability characterized by �ii� high
Excitation, �iii� low Inhibition, or �iv� a combination of both.
The latter condition corresponds to the most excitable
state—i.e., the lowest seizure threshold. For these four pa-
rameter settings we investigated a number of features that
can be extracted from the model spontaneous output and

from the triggered response signal. These features include
the power spectra, the PCI values, and the distribution of
phases of triggered responses from which the rPCI value is
derived. The results are shown in Fig. 5. The four panels in
part �a� of the figure show the model output—i.e., the mean
membrane potential of the main cells’ population for four
different conditions. One can notice that as one goes from
the normal condition �i�, through the conditions of high Ex-
citation �ii�, low Inhibition �iii�, into highest excitability �iv�,
the DC of the mean membrane potential increases, which
results in a progressive decrease of the seizure threshold.
However, this change in excitability is not accurately re-
flected in the signal variance. The transition from a normal to
a high Excitation condition leads to an increased amplitude
of the spontaneous activity, while the transition into the low
Inhibition condition has no influence on the variance of the
output signal. This is also put into evidence by the power
spectra of the spontaneous activity shown in part �b� of Fig.
5. The spectral magnitudes under �i� normal conditions �blue
crosses� overlap perfectly with signal’s power spectrum un-
der conditions of �iii� low Inhibition �yellow circles�. Simi-
larly, both spectral magnitudes under both high Excitation
conditions ��ii� and �iv�� overlap �green squares and red dots�
regardless the difference in the level of inhibition. In con-
trast, the average spectra of the triggered responses shown in
the right panel, part �b� of Fig. 5, are sensitive to the levels of
both excitation and inhibition; this is especially clear when
the inhibition is low. Under this condition ��iii� and �iv��, the
difference in spectra �yellow circles and red dots� is most
pronounced. However, for a normal level of inhibition ��i�
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FIG. 4. Examples of time evolution of the S0, D1, and rPCI in
two TLE patients. Points denote measurements, while the vertical
bars denote seizures. The inhomogeneous structure of the plots is
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the night. In patient 3, the S0 does not change towards seizures,
while there is a marked decrease of the D1 parameter and increase
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but starts to increase after the first seizure. The rPCI parameter
initially increases up to few hours after first seizure and starts to
decrease afterwards.
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lated with the seizure threshold, while its scatter-plot hyperbolic
shape resembles that of the real data. �d� Scatter plot of the time to
next seizure and rPCI value in a TLE patient �patient 3 described in
�3��.
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FIG. 5. �Color online� Model-based interpretation of the relationship between the PCI and the level of excitability. In each part �a�, �b�,
�c�, and �d� of this figure, different variables are plotted for four different conditions. Simulations of normal conditions �“normal”� were
performed with EXC=2.5 mV and SDI=50 mV; increased excitability due to increased excitation �“high Exc”� was simulated using
EXC=4.75 mV and SDI=50 mV; increased excitability due to decreased inhibition �“low Inh”� was simulated using EXC=2.5 mV and
SDI=22 mV; and highest excitability �“high Exc, low Inh”� was simulated using EXC=4.75 mV and SDI=22 mV. In all simulations the
external stimulation input was a 10-Hz sequence of 60 monophasic pulses of 1 ms duration. �a� Spontaneous model output for different
excitability conditions. Different parameter settings result in different DC offsets of the signals; “normal,” −9.45 mV; “high Exc,” −7 mV;
“low Inh,” −3 mV; “high Exc, low Inh,” −0.52 mV. Increased excitation �upper right panel� leads to increased signal variance, while
lowered inhibition �lower left side panel� has no significant influence on the signal variance. �b� Average power spectra of spontaneous and
triggered activity. In both cases the spectra were computed by dividing the signal �in the spontaneous case artificial “triggers” were
introduced� into segments corresponding to single response epochs �100 ms� and removing the DC offset of each epoch. For spontaneous
spectra the magnitudes obtained from discrete Fourier transform of the epochs were averaged across all epochs and plotted along a
logarithmic �dB� scale. For triggered spectra, the average of complex amplitudes of Fourier-transformed triggered responses over all epochs
was computed and its magnitude was plotted. In each panel, spectra corresponding to different excitability conditions are plotted with
different colors and markers: “normal,” blue crosses; “high Exc,” green squares; “low Inh,” yellow circles; “high Exc, low Inh,” red dots.
Spontaneous spectra of “normal” and “low Inh” as well as those of “high Exc” and “high Exc, low Inh” overlap with each other, implying
that level of inhibition has no influence on spectral power of background activity at any frequency. The spectra of triggered responses are
distinct for changes of excitation and inhibition. �c� Spectrum of phase clustering index. Phase coherencies at a given frequency were
computed directly from the spread of phases of complex amplitudes obtained by Fourier transform of triggered responses �blue bars� and
using Eq. �2� �black dashed line�. Values of the PCI at the driving frequency �PCI1� and at the frequency at which the PCI has maximal value
�PCImax� are marked with horizontal lines of colors corresponding to the color code used in spectral plots in part �b�. The distance between
the lines corresponds to the value of rPCI. The rPCI values increase for increasing DC levels of the output signals shown in part �a�. �d�
Complex amplitudes. Polar plots of amplitudes of Fourier-transformed triggered responses at the driving frequency and at which the PCI is
maximal. Color of the arrows corresponds to the color code used in parts �b� and �c�. Only amplitudes from the first 25 triggered responses
are shown for clarity. While the spread of phases—i.e., the variability of the arrow directions—is small for PCImax for all four conditions, the
degree of phase scattering at the driving frequency, as quantified by PCI1, differs between the conditions studied.
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and �ii�� the distinction between triggered responses spectra
�blue crosses and green squares� is less prominent. The dif-
ference between all four conditions can be most clearly seen
in the phase clustering index plots in part �c� of the figure.
The PCI computed directly from the distribution of phases of
triggered responses at the driving and higher harmonic fre-
quencies is plotted as vertical bars. On each plot are super-
imposed PCI curves computed by way of formula �2� using
the spontaneous spectrum, instead of the spectrum of back-
ground fluctuations, Sf. As can be seen, all four PCI spectra
are close to the value 1 for higher frequencies ��100 Hz�.
This is due to the fact that background activity has very little
power in this frequency range �note that spectral magnitudes
in part �b� are plotted in logarithmic scale� and does not
affect phase coherency. On the contrary, at the lower side of
the frequency spectrum all four PCI spectra differ markedly.
This is because the amplitudes of excitatory and inhibitory
postsynaptic potentials, which have time constants in the or-
der of tens of milliseconds, influence spectral properties of
the system mainly at the low-frequency range ��100 Hz�. In
general, we should note that both a high spectral magnitude
of background activity and a low spectral magnitude of trig-
gered responses cause a lowering of the phase coherency
�see Eq. �2��. Indeed, the lowest PCI values are attained for
the condition of high Excitation and low Inhibition, for
which the background spectrum is relatively high and the
triggered spectrum is the lowest among all the four spectra.
On the contrary, the highest PCI values are obtained for the
normal excitability conditions. The single-value quantifier of
the PCI spectrum, the relative PCI or rPCI, is defined as the
difference between the highest PCI at any of the harmonic
frequencies and PCI at the stimulation frequency. In PCI
histograms �Fig. 5�c��, the maximal value of the PCI, PCImax,
and the PCI at the stimulation frequency, PCI1, are marked
by two horizontal lines in colors corresponding to those used
in the plot of the corresponding power spectra. The distance
between the two lines corresponds to rPCI. One can see that
the value of rPCI increases from the normal condition to the
other conditions along with the decrease of seizure threshold.
Part �d� of the figure shows polar plots of the complex am-
plitudes of the triggered responses for the two frequency
components for which the rPCI was computed. The length of
each arrow corresponds to the magnitude of the Fourier-
transformed triggered response at a given frequency, while
the angle corresponds to its phase relative to the stimulus.
One can notice that whereas the distribution of phases corre-
sponding to PCImax is rather tight for all four conditions, the
phases at the stimulation frequency are aligned for the nor-
mal conditions, but they are randomly scattered for the con-
dition of highest excitability. Thus, in the model, an increase
of phase variability at the driving frequency is mainly re-
sponsible for the increase of the rPCI value that is associated
with lowering the seizure threshold.

IV. DISCUSSION

Complex partial seizures are the most common seizure
type �18�, while 60% of them originate in the hippocampus
and surrounding mesial temporal structures �19�. We used a

computer model of the hippocampal network to test in a
controlled way the behavior of different indices that can be
used to follow dynamical changes of EEG signals as the
transition to a seizure approaches. It is generally believed
that the processes that lead to epilepsy �i.e., epileptogenesis�
are related to a shift of the balance between excitation and
inhibition �14�. It has been shown in vitro �15� that in the
CA1 area of the epileptic hippocampus the glutamatergic
drive was increased in soma of pyramidal cells, while the
GABAergic drive was decreased in dendrites. Furthermore,
using animal models of TLE, it has been shown that excita-
tory synaptic activity was increased in pyramidal cells in
epileptic animals �20�, while GABAergic inhibition was re-
duced in dendrites, but not in soma of pyramidal cells �17�. It
should be noted that a change in synaptic activity may result
from alterations in synaptic current properties, such as decay
and rise-time constants or current amplitude, or from synap-
tic reorganization—e.g., formation of new recurrent excita-
tory circuits and/or loss of inhibitory cells. We mapped the
microscopic glutamatergic and GABAergic activity changes
in the CA1 region into only two macroscopic parameters: the
amplitude of the average excitatory postsynaptic potential,
EXC, and the amplitude of the average slow Inhibitory
postsynaptic potential, SDI. It should be noted, however, that
in our model synaptic potential amplitudes are multiplied by
coupling constants C; thus, a change of EXC or SDI is
equivalent to a change in the average number of synaptic
contacts. For that reason, although we cannot investigate lo-
cal interactions between individual cells, we are able to cap-
ture global changes in synaptic network connectivity. Al-
though our model assumptions may be violated in specific
experimental conditions, they should hold in general when
dealing with the overall behavior of interacting populations
of neurons. Using two parameter analyses, we showed that
both excitatory and slow Inhibitory synaptic transmissions
were critical with respect to setting the seizure threshold in
the model �Fig. 2�a��. We may assume that in the real system
during ictogenesis these two parameters change over time,
progressively reducing the system’s stability and ultimately
leading to an ictal transition. Hence, we compared the ability
of different EEG indices to detect changes of excitation and
inhibition in the modeled hippocampal network. We found
that the change of excitation could be accurately detected by
the standard deviation of the spontaneous activity, while the
change of inhibition was not reflected in this variable �Fig.
2�b��. On the other hand, the spectral variable corresponding
to the evoked response changed markedly with the level of
inhibition, but it was not sensitive to the change of excitation
�Fig. 2�c��. The rPCI being a combination of the spontaneous
and evoked activities was sensitive to changes of both EXC
and SDI parameters �Fig. 2�d��. To quantify the ability of the
three measures investigated here, rPCI, S0, and D1, regarding
their potential use for seizure anticipation, we computed the
nonlinear correlation index h2 between the seizure threshold
and the values of the three measures for all possible pairs of
EXC and SDI parameters. The correlation index for the rPCI
measure was higher than that for both the S0 and D1 mea-
sures �Fig. 3�. These results imply that purely passive obser-
vations of the system do not reliably detect changes under-
lying a transition to a seizure. The most reliable way to
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detect these changes is to apply an active stimulation para-
digm. On the other hand, by monitoring separately changes
in spontaneous and evoked activity, e.g., by means of mixed
active-passive paradigms, it might be possible to reconstruct
processes at the neuronal level that are responsible for ictal
transitions in a given patient. The model predicts that
changes in spontaneous activity, measured by the S0 param-
eter, would be primarily related to alterations in the excita-
tory synaptic component, while changes in the evoked activ-
ity, measured by the D1 parameter, would reflect mainly the
breakdown of inhibitory mechanisms. Two examples of the
time evolution of the S0, D1, and rPCI measures in epileptic
TLE patients are shown in Fig. 4. The relatively fixed value
of the S0 parameter throughout the observation period in pa-
tient 3 suggests that in this patient the level of excitation
remained constant. On the other hand, a pronounced de-
crease of the D1 parameter suggests that progressive lower-
ing of inhibition, possibly due to tapering of the antiepileptic
drug during monitoring, was a primary factor leading to sei-
zures �vertical lines�. In patient 4 the marked decrease of the
D1 parameter occurred together with the increase of the S0

parameter. It suggests that changes of both excitation and
inhibition played a role in shifting the balance of the system
towards the first ictal transition. Interestingly, in this patient,
the D1 parameter decreased and the rPCI increased only up
to a few hours after the first seizure. Shortly afterwards, the
reverse changes were observed. This shows that the first sei-
zure may alter the conditions for the generation of the sub-
sequent seizures, which may pose a limitation of the ability
of rPCI, and other indices as well, to predict seizures that
occur in clusters in some patients. The present model study
not only demonstrates that it is useful to perform stimulation
in order to obtain the necessary information about the system
dynamics and its evolution towards the state of high prob-
ability of ictal transition �proictal state�, but it also allows
one to explain why we need to stimulate. In general, an ex-
tracellular time-varying signal reflects the transfer function
of the local neural network only if the network is subjected
to a flat spectrum—e.g., white noise, input. As described,
e.g., in �21�, a number of stochastic processes at the micro-
scopic level can be considered as noise sources contributing
to random fluctuations of noise input signals at the macro-
scopic level. One should realize that the white noise is a
theoretical idealization and does not exist in real neural net-
works because these networks have filtering properties. Even
if one assumes a white noise input, as in the present model,
the high-frequency content of the input signal is attenuated
already at the first excitatory synaptic connection �see Fig. 1�
and therefore it cannot fully reveal the state of the other parts
of the network, e.g., resulting from the inhibitory feedback
loop. External stimulation perturbing all parts of the network
using a flat spectrum input is therefore likely to reveal more
information about local network properties. From the above
discussion it follows that the effective stimulation should
have flat spectrum characteristics, but it is not essential that it
be delivered periodically. Furthermore, as far as only spectral
�i.e., linear� properties are concerned, we may predict that
white noise input applied externally should perform equally

good as pulse stimulation as we verified using the model �not
shown�. Therefore the stimulation sequence does not need to
be “fine-tuned” to a specific critical frequency or pattern,
which increases the universality of the method. The location
of the stimulation input within the system, on the contrary,
can be of significance for the state reconstruction perfor-
mance of the rPCI quantity. As we can show theoretically,
stimulation applied along the same pathway as the external
“noise” is fed to the system would result in constant rPCI
values, independent of the system’s state.

Finally, we propose a model-based interpretation of the
experimental results that motivated the present study—i.e.,
that an increase of the rPCI anticipates transitions to epileptic
seizures in TLE patients �Fig. 5�. Additionally, we verified
numerically the relationship between PCI and the ratio be-
tween the triggered response spectrum and the spectrum of
background fluctuations of the stimulated system, expressed
by formula �2�. The spectrum of background fluctuations, Sf,
was approximated here by the spontaneous spectrum; none-
theless, the relationship was preserved �Fig. 5�c��, suggesting
that deviations from the linear response model are negligible
in these cases, and therefore purely linear effects may ac-
count for the rPCI seizure predictive power in the model and
possibly also in real systems.
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APPENDIX

In this appendix the expression for PCI in the framework
of the linear response model is derived.

The response of a linear system to a stimulus can be rep-
resented in the following general form:

Zf
s = Tf

sxf
s + Qf

s , �A1�

where xf
s are the Fourier amplitudes of the stimulus, Tf

s rep-
resent input-output transfer functions, and Qf

s represent inter-
nal functions reflecting the background activity. We assume
that both the stimulation and the system’s transfer functions
are stationary—i.e., xf

s =xf and Tf
s =Tf for all stimuli. We de-

fine the triggered response spectral power function as a
stimulus average of �A1�:

Df
2 � 	�Zf

s�s	2 = 	Tf	2	xf	2. �A2�

In deriving �A2� we assumed that the internal fluctuations are
uncorrelated to the stimulus and �Qf

s�s
0. Next, we average
the square magnitude of �A1�, assuming again that the back-
ground activity is uncorrelated to the stimulus and the sys-
tem’s response:

Af
2 � �	Zf

s	2�s = Df
2 + Sf

2. �A3�

Here we have introduced the power spectrum of background
fluctuations as
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Sf
2 � �	Qf

s	2�s. �A4�

Finally, substituting �A2� and �A3� into expression for PCI
�1�, we get

� f = � �Zf
s�s

��	Zf
s	2�s

� = 
1 +
Sf

2

Df
2��−1/2�

. �A5�

The above formula gives the relationship between the PCI
and the noise-to-signal ratio of the stimulated system.
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